Background pattern of a brain with neural connections
Peter Vangheluwe

Peter Vangheluwe

Lead PI (Core Leadership)

KU Leuven

Peter Vangheluwe is an Associate Professor in the Department of Cellular and Molecular Medicine at KU Leuven in Belgium, and is head of the Laboratory of Cellular Transport Systems. Using biochemical and molecular cell biology approaches, he characterizes new P-type transport ATPases that regulate polyamine homeostasis and lipid distribution in the cell. He discovered that ATP13A2/PARK9 works as a lysosomal polyamine transporter, and that ATP10B operates as a lysosomal glucosylceramide exporter. He published >60 peer-reviewed publications and received two awards by the Queen Elisabeth Foundation for Neurosciences in Belgium.

Recent ASAP Preprints & Published Papers

Novel green fluorescent polyamines to analyze ATP13A2 and ATP13A3 activity in the mammalian polyamine transport system

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure–activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.

P5B-ATPases in the mammalian polyamine transport system and their role in disease

Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.

Our Research Teams

Members of the CRN work diligently to advance our understanding of Parkinson’s disease. Learn more about recent CRN discoveries and achievements.